p-TSA catalyzed Multicomponent synthesis of 12-(substituted phenyl)-8*H*-benzo[5,6]chromeno[2,3-*d*]pyrimidine-9,11(10*H*,12*H*)-dione derivatives.

Ashok R.Karad¹, Anilkumar G.Jadhav¹, Navanand B. Wadwale², Gopinath S. Khansole³, Sunil S. Choudhare⁴, Sachin S.Tiwade⁵, Swapnil V.Nawhate⁶ and Vijay N. Bhosale^{*6}

¹Dept.of Chemistry, M. G. M. Ahmedpur, Latur (MS) India.
²Dept.of Chemistry, M.S.G College Malagaon, Dist.Nashik, India.
³Department of Chemistry, D. A. B. N. College, Chikhali, Sangli, (MS), India.
⁴Department of Chemistry, S. D. College, Soegaon, Dist. - Aurangabad, (MS), India.
⁵Department of Chemistry, D.B.C..., Bhokar, (MS), India.
⁶P.G.Research Centre, Department of Chemistry, Y. M. Nanded (MS) India.
<u>Email: vijaybhosaleg@gmail.com</u>

ABSTRACT:

A simple procedure has been developed for the synthesis of 12-(substituted phenyl)-8*H*-benzo[5,6]chromeno[2,3-*d*]pyrimidine-9,11(10*H*,12*H*)-dione derivatives using β -Napthol, Barbituric acid and different substituted aromatic Aldehydes were refluxed in ethanol for certain time period using *p*-Toluenesulphonic acid (*p*-TSA) as phase transfer catalyst to form 12-(phenyl)-8*H*-benzo [5,6]chromeno[2,3-*d*]pyrimidine-9, 11(10*H*,12*H*)-dione derivatives.

KEYWORDS: *β*-Napthol, Aromatic Aldehydes, Barbituric acid, *p*-TSA, MCRs.

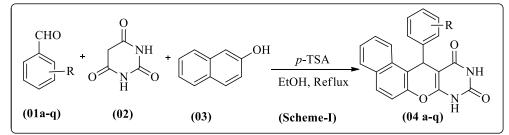
INTRODUCTION:

Multicomponent reactions (MCRs) have been useful for the synthesis of highly well-designed complex organic molecules and biologically active heterocyclic compounds from simple and willingly available preliminary materials.¹⁻ ³ These reactions have attracted extraordinary attention owing to their cleanness, good organization, selectivity, convergence, shorter reaction time, atom-economic unique -eness and environmentally benign.⁴⁻⁵ As a commanding and widely employed synth- etic etiquette, MCRs provide a highly efficient platform for the rapid synthesis of various fused-ring products, in which the formation of two or more new rings is allowed.⁶⁻⁹ Fused heterocyclic architectures are extensive in natural products and pharmaceutical molecules, informative their great capacity as a source of novel proficient compounds.¹⁰⁻¹³ Multicomponent reactions (MCRs) play an important role in modern synthetic organic chemistry because they generally occur in a single pot and exhibit a high atom-economy and selectivity.

Multicomponent reaction reduces time and saves energy and raw material.¹⁴ Over the past decade, various advanced sequential MCRs have been developed where 1,3-dicarbonyl derivatives are important synthetic intermediates due to its multiple functionalities that can be involved either as nucleophilic or electrophilic species in a large variety of synthetic transformation.¹⁵ Their versatility and effectiveness as potential multicomponent substrates has been used in various MCRs such as Hantzsch 1,4-dihydropyridine synthesis,¹⁶ Biginelli reaction¹⁷ and Michael addition reaction.¹⁸ Multicomponent reactions (MCRs) have emerged as an attractive and powerful strategy for organic synthesis compaired to multistep reactions because of the creation of numerous new bonds in a one-pot reaction, low number of reaction and purification steps, high atom economy, simple procedures, facile implementation and generally excellent yields of products.¹⁹ Therefore, academic and industrial research groups have increasingly focused on the use of MCRs to synthesize a broad range of products ²⁰⁻²¹ and development of MCRs can lead to new efficient synthetic methodologies to afford many small organic compounds in the field of modern organic, bioorganic, and medicinal chemistry.²²⁻²⁴

LITERATURE REVIEW:

Naphthopyrano pyrimidine and benzo chromeno pyrimidine dione and its derivatives have attracted attention because structural motifs of these compounds are very useful in medicinal and biological chemistry.²⁵Also these compounds exhibit promising physiological,²⁶ hypolipidemic,²⁷ molluscicidal,²⁸ antifungal,²⁹ antitumor,³⁰ analgesic,³¹ antibacterial³² and anticonvulsant activities.³³The synthesis of Naphtho- pyrano pyrimidines via earlier methods has been reported so far using formic acid,³⁴ indium(III) chloride,³⁵ iodine,³⁶ ZnO nanoparticles,³⁷ H₄[SiW₁₂O₄₀],³⁸L-proline,³⁹poly(AMPS-coAA),⁴⁰alumKAl(SO₄)₂.12H₂O,⁴¹Al(H₂PO₄)₃,⁴² Fe₃O₄ @SiO₂,Fe₃O₄@MCM-4,⁴³ basic ionic liquid⁴⁴ and trichloroisocyanuric acid (TCCA).⁴⁵ Conversely, some of these methods often involve long reaction times, harsh reaction conditions and expensive catalysts. Thus, there is a need to develop a simple and cost-effective etiquette


MATERIAL METHOD/ PRESENT WORK:

In present work, we have investigated the one pot three component synthesis of different substituted derivatives of 12-(phenyl)-8*H*-benzo[5,6]chromeno[2,3-*d*] pyrimidine-9,11(10*H*, 12*H*)-dione derivatives. The reaction followed by Knovengel condensation and then Michael addition reaction.

A mixture of β -Napthol (1mmol)(03), Barbituric acid (1mmol) (02) and different substituted aromatic Aldehyde(1mmol) (01a-q) was refluxed in ethanol for certain time period using *p*-Toluenesulphonic acid (*p*-TSA) (10 mol%) as a catalyst to form12-(phenyl)-8*H*-benzo[5,6]chromeno[2,3-*d*]pyrimidine-9, 11(10*H*,12*H*)-dione derivatives. Progress of the reaction was monitored by TLC. Solid formed was filtered, washed with water and recrystallized from ethanol to give (04 a-q). These obtained products (04 a-q) were completely characterized by IR, ¹H-NMR, Mass and ¹³C-NMR spectroscopic technique and also elemental analysis.

RESULT AND DISCUSSION:

A mixture of β -Napthol (1mmole) (03), Barbituric acid (1 mmol) (02) and Aromatic aldehyde (1mmol) (04 aq) was refluxed independently in ethanol using *p*-TSA as an efficient catalyst for certain period of time (Scheme-I).

It was considered as a model reaction (Scheme-I) for investigating the effectiveness of different solvent using catalytic amount of p-TSA (10mol %). Solvent optimization clearly noted that ethanol is the best solvent for the desired transformation due to fast reaction rate and high yield (Table-01). We have carried out the model reaction using different stoichiometric amount of catalyst. The catalyst screening result are summarized in (Table-02). It was observed that the excellent yield was achieved by using 10 mol% of p-TSA (Table-02).These synthesized products (VA-47a-q) were characterized from IR, ¹H-NMR, Mass and ¹³C-NMR spectroscopic technique and also elemental analysis.

The *p*-TSA acting as phase transfer catalyst (PTC) that's why reaction mechanism was accelerated, *p*-Toluenesulphonic acid (PTSA) is commercially available and is a very cheap chemical, white solid, non-volatile that is soluble in water, alcohols, and other polar organic solvents. Most often, TsOH refers to the monohydrate, TsOH.H₂O. TsOH is a strong organic acid, about a million times stronger than benzoic acid. This catalyst can act as ecofriendly for a variety of organic transformations.

We propose tentative plausible mechanism for the formation of 12-(phenyl)-8*H*-benzo[5,6]chromeno[2,3-d]pyrimidine-9,11(10*H*,12*H*)-dione (04 a-q), in the presence of *p*-TSA. The overall, mechanism takes place according to Knoevenagel-Michael reaction (Scheme-I). The spectral and physical data of the compound is proved by agreement data.

Entry	Solvent	Reaction Time (h)	Yield (%) ^[b]
1	DMF	6.0	35
2	Ethylene glycol	5.5	50
3	THF	6.2	40
4	Acetonitrile	6.0	52
5	DCM	7.0	58
6	Ethanol	5.0	90
8	Water+Ethanol(1:1)	5.0	65

Table.01. Optimization of the reaction conditions using different solvents.

Reaction conditions: β -napthol (1 mmol) (03), Barbituric acid (1 mmol) (02) and aromatic aldehyde (1 mmol) (01) was refluxed at 70 °C. ^[d] Isolated yields.

Table-02: Optimization Study for the amount of *p*-TSA.

abic-0	inc-02. Optimization study for the amount of <i>p</i> -15A.								
	Entry	Catalyst	Temperature	Reaction Time	Yield				
		(mole %)	(°C)	(h)	% ^[b]				

ISSN: 2455-0620 Impact Factor: 6.719 Special Issue : 21, Jan – 2021 Publication Date: 31/01/2021

1	01	70	5.0	36
2	02	70	5.0	44
3	04	70	5.0	56
4	06	70	5.0	64
5	08	70	5.0	76
6	10	70	5.0	90
7	15	70	5.0	92

Reaction conditions: β -napthol (1 mmol) (03), Barbituric acid (1 mmol) (02) and aromatic aldehyde (1 mmol) (01) was refluxed at 70 °C. ^[d] Isolated yields.

Probable Mechanism:

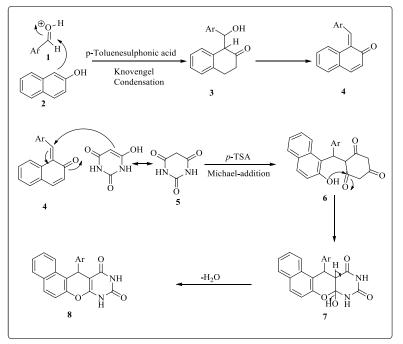


TABLE.03 Reaction Time, Yields and M.P.of 12-(phenyl)-8*H*-benzo[5,6]chromeno[2,3-*d*]pyrimidine-9,11(10*H*,12*H*)-dione derivatives.

Entry	Comp. code	Structure of compounds	Time (Hrs)	Yield (%)	M.P. (Obs. ⁰ C)	M.P. (Lit. ⁰ C)
1	04 a	O NH O NH O NH O NH	5.2	80	275-277	276-278
2	04 b	OH OH O NH H O NH	5.0	90	248-250	250-252

3	04 c	NO ₂ O NH	5.5	78	304-306	305-307
4	04 d	OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	5.0	90	288-289	288-290
5	04 e	F O O N H O N H	5.2	82	278-279	280-282
6	04 f	Br O NH O NH O H	5.5	77	262-264	265-266
7	04 g		5.2	82	298-300	301-302
8	04 h	OCH ₃ OCH ₃ O O N H	5.0	86	257-259	258-260
9	04 i	OH OCH3 O NH O NH O H	5.0	84	284-286	286-288

10	04 j	O O O N H	6.5	72	272-274	274-276
11	04 k	CH ₃ O NH O NH O H	5	86	279-280	280-281
12	04 1	Cl Cl Cl O NH H	5.5	74	290-291	291-292
13	04 m	OH O O NH O NH O H	5.5	80	250-252	252-254
14	04 n	S O NH O NH O H	6.5	70	266-268	268-270
15	04 o	H ₃ C _N , CH ₃ O NH O NH	5	87	274-276	276-278
16	04 p	Cl OH OH OH OH OH OH OH OH OH OH OH OH OH	5.0	80	305-306	306-308
17	04 q	HN O NH O H	6.0	70	277-278	278-279

ISSN: 2455-0620

Impact Factor: 6.719

EXPERIMENTAL:

Melting points of synthesized compounds were determined by open capillary tubes and uncorrected. Purity of all the products was routinely checked by thin layer chromatography (TLC) on pre-coated sheets of silica gel-C plates of 0.25 mm thickness using UV Chamber for detection. Perkin-Elmer FT-IR spectra were recorded in KBr pallets on infrared spectrophotometer. Bruckner advance spectrophotometer 300 or 400 MHz was used to record ¹H and ¹³C-NMR spectra in DMSO-d₆ using TMS as internal standard. Mass spectra were recorded on FT-VC-7070 H Mass spectrometer using the EI technique at 70 eV.

SPECTRAL ANALYSIS:(FINDINGS)

- 1) 12-(4-nitrophenyl)-8*H*-benzo[5,6]chromeno[2,3-*d*]pyrimidine-9,11(10*H*,12*H*)dione.(04c) (IR (KBr/cm⁻¹) 3234 (-NH), 3080 (Ar C-H), 1716 (-C=O), 1694 (Ar C=C), 1531 (-NO₂) cm¹; ¹HNMR (300MHz, DMSO d₆/ ppm); δ 4.75(1H,s,CH),7.32 (1H,d,Ar-H), 7.50 (2H,d,Ar-H), 7.60-7.72 (2H,t,Ar-H), 7.80 (H,d,Ar-H), 7.94 (1H,d,Ar-H), 8.15 (1H,d, Ar-H), 8.27 (1H,d,Ar-H) 11.30 (1H,s,NH), 11.86(1H,s,NH)EI-MS (m/z: RA %): 387 (M⁺, 100%). ¹³C MHz, DMSO-d₆/ppm) δ:37.1, 81.30, 118.91,122.12, 123.23, NMR (300 123.24, 125.55. 125.55,128.56,128.86,133.57,145.48,151.29,151.81,154.12,157.93,164.10;Elemental analysis: Calculated data for C₂₁H₁₃N₃O₅; C, 65.12; H 3.38, N, 10.85. Found: C 65.06; H, 3.32; N, 10.20.
- 2) 12-(4-fluorophenyl)-8H-benzo[5,6]chromeno[2,3-d]pyrimidine-9,11(10H,12H) dione.(04e) IR (KBr/cm⁻¹) 3262 (-NH), 3112 (Ar C-H), 1744 (-C=O),1354 (C-F) cm⁻¹; ¹HNMR(300MHz, DMSO d₆/ ppm); δ 4.75(1H,s,CH),6.90 (2H,d,Ar-H), 7.02 (2H,d,Ar-H), 7.25 (1H,d,Ar-H), 7.45 (2H,t,Ar-H), 7.65 (1H,d,Ar-H), 8.00 (1H,d,Ar-H), 8.20 (1H,d,Ar-H) 11.05 (1H,s,NH), 12.07(1H,s,NH). EI-MS (m/z: RA %): 360 (M⁺, 100%); ¹³CNMR (300MHz, DMSOd₆/ppm) δ: 37.10, 82.10, 116.56, 119.02, 122.10, 123.25, 126.34, 129.14, 130.02, 135.28, 142.37, 148.20, 150.70, 151.82, 156.13, 160.40, 164.92.; Elemental analysis: Calculated data for C₂₁H₁₃FN₂O₃; C 70.00, H 3.64, N 7.77 Found: C 70.02, H 3.60, N 7.72)
- 3) 12-(4-chlorophenyl)-8*H*-benzo[5,6]chromeno[2,3-*d*]pyrimidine-9,11(10*H*,12*H*)-dione.(04.g) IR (KBr/cm⁻¹) 3219 (-NH), 3091 (Ar C-H), 1755 (-C=O), 1288 (C-O-C), 792(C-Cl) cm⁻¹; ¹HNMR (300MHz, DMSO d₆/ ppm) δ: 4.85(1H,s,CH),7.12 (2H,d,Ar-H), 7.37-7.40 (2H,d,Ar-H), 7.52 (1H,d,Ar-H), 7.75 (2H,t,Ar-H), 7.85 (1H,d,Ar-H), 8.07 (1H,d, Ar-H), 8.20 (1H,d,Ar-H) 11.26 (1H,s,NH), 11.45 (1H,s,NH); EI-MS (m/z: RA %): 376 (M⁺, 100%) ¹³CNMR (300MHz, DMSOd₆/ppm) δ: 37.46, 81.30, 117.90, 119.03, 123.20, 125.70, 126.23, 128.82, 129.42, 131.80, 135.50, 146.70, 150.70, 151.90, 156.19, 163.00. Elemental analysis: Calculated data for C₂₁H₁₃ClN₂O₃; C 66.94, H 3.48, N 7.43 Found: C 66.90, H 3.39, N 7.3
- 4) 12-(4-methoxyphenyl)-8-Hbenzo[5,6]chromeno[2,3-d]pyrimidine-9,11(10H,12H)-dione.(04 h) IR (KBr/cm⁻¹) 3211 (-NH), 3064(Ar C-H), 1732 (-C=O), 1269 (C-O-C) cm⁻¹; ¹HNMR (300MHz, DMSO d₆/ ppm) δ: 3.85 (3H,s,-OCH₃), 4.90 (1H,s,-CH), 7.05 (2H,d,Ar-H), 7.18 (2H,d,Ar-H), 7.35 (1H,d,Ar-H), 7.50 (1H,t,Ar-H), 7.60 (1H,t,Ar-H), 7.60 (1H,t,Ar-H), 7.60 (1H,t,Ar-H), 7.50 H), 7.70 (1H,d,Ar-H), 8.05 (1H,d,Ar-H), 8.22 (1H,d,Ar-H) 11.16 (1H,s,NH), 11.29 (1H,s,NH).; EI-MS (m/z: RA %): 372 $(M^{+.},$ 100%); ¹³CNMR (300MHz, DMSOd₆/ppm) δ:38.12,82.00,115.20, 115.20,118.90,122.36,123.01,123.14,126.19,128.40,129.12,129.12,130.06,139.93,150.70,151.10,156.86,159.00,1 63.00 Elemental analysis: Calculated data for C₂₁H₁₃N₃O₃; C 70.96, H 4.33, N 7.52 Found: C 70.90, H 4.29, N 7.48)..

CONCLUSION:

We have proposed a novel efficient and eco-friendly synthesis of 12-(substituted phenyl)-8*H*-benzo[5,6]chromeno[2,3-*d*]pyrimidine-9,11(10*H*,12*H*)-dione derivatives by one-pot three component condensation reactions. The product can be easily isolated by simple work up technique, ecofriendly catalyst. Furthermore, the procedure offers a number of advantages including improved yields, simple experimental procedure, cleaner reactions and low cost which makes it a useful and attractive strategy with respect to economic and environmental advantages.

ACKNOWLEDGMENTS:

Authors are grateful to Principal, Yeshwant Mahavidyalaya, Nanded for providing laboratory facilities, SRTMUN for sanctioning MRP (APDS/Uni.MRP/Sci.and technology-hem./2019-20/2819, UGC, New Delhi (File no.41-230/2012) (SR) Vishnu chemical Hyderabad, The Director, CSIR-IICT, Hyderabad for providing spectra.

REFRENCES:

- 1. A. Domling; Chem Rev., 2006, 106, 17.
- 2. A. Domling, W. Wang, K. Wang; Chem Rev., 2012, 112, 3083.
- 3. B. Toure, D. Hall; Chem Rev., 2009, 109, 4439.
- 4. S. Brauch, W. Berkel, B. Westermann; Chem Soc Rev., 2013, 42, 4948.
- 5. B. Ganem; Acc Chem Res., **2009**, 42, 463.

ISSN: 2455-0620 Impact Factor: 6.719

- 6. J. Sunderhaus, S. Martin; Chem Eur J., 2009; 15, 1300.
- 7. N. Ismabery, R. Lavila; Chem Eur J., 2008, 14, 8444.
- 8. B. Jiang, T. Rajale, W. Wever, S. Tuand; G. Chem Asian J., 2010, 5, 2318.
- 9. B.J iang, F. Shi, S.T u; J.Curr Org Chem., 2010, 14, 357.
- 10.C. Galliford, K. Scheidt; Angew Chem Int Ed., 2007, 46, 8748.
- 11.K. Kumar, H. Waldmann; Angew Chem Int Ed., 2009, 48, 3224.
- 12.D. James, H. Kunze, D. Faulkner; J Nat Prod., 1991, 54, 1137.
- 13.J. Kobayashi, M. Tsuda, K. Agemi; Tetrahedron., 1991, 47, 6617.
- 14.I. Devi, P. Bhuyan; Tetrahedron Lett., 2004, 45, 8625.
- 15.L. Wessjohann; D. Rivera, O. Vercillo; Chem. Rev., 2009, 109, 796.
- 16.A. Hantzsch; Leibigs Ann. Chem., 1882, 215, 1.
- 17.P. Bigenelli; Gazz. Chim. Ital., 1893, 23, 360.
- 18.J. Betancort, K. Sakthivel, R. Thayumanava, C. Barbas; Tetrahedron Lett., 2001, 42, 4441.
- 19.B. Ganem; Acc. Chem. Res., 2009, 42, 463.
- 20.A. Shaabani, A. Maleki, A. Rezayan, A. Sarvary; J. Mol. Divers., 2011, 15, 41.
- 21.C. Altug, A. Burnett, E. Caner, Y. Durust, M. Elliott, R. Glanville, C. Guy, A. Westwell; Tetrahedron., 2011, 67, 9522.
- 22. M. Elinson, A. Ilovaisky, V. Merkulova, P. Belyakov, A. Chizhov; Tetrahedron., 2010, 66, 4043.
- 23.M. Dekamin, Z. Mokhtari; Tetrahedron., 2012, 68, 1706
- 24.M. Dekamin, Z. Mokhtari, Z. Karimi, Sci. Iran. Trans. C: Chem. Chem. Eng., 2011, 18, 1356.
- 25.S. Kuo, L. Huang, H. Nakamura; J. Med. Chem., 1984, 27, 539.
- 26.M. Radi, S. Schenone, M. Botta; Org. Biomol. Chem., 2009, 7, 2841.
- 27.C. Banzatti, U. Branzoli, P. Lovisolo, P. Melloni, P. Salvadori; A rzneimForsch., 1984,34, 864.
- 28.G. Nawwar, F. Abdelrazek, R. Swellam; Arch. Pharm., 1991, 324, 875.
- 29.R. Heckler, G. Jourdan; European Patent EP., 1991, 414386.
- 30.S. Mohr, M. Chirigos, F. Fuhrman, J. Pryor, Cancer Res., 1975, 35, 3750.
- 31.G. Regnier, R. Canevari, J. Le, S. Holstorp, J. Daussy, J. Med. Chem., 1972, 15, 295.
- 32.G. Pershin, L. Shcherbakova, T. Zykova, V. Sokolova; Farmakol Toksikol., 1972, 35, 466.
- 33.A. Bedair, N. El-Hady, M. El-Latif, A. Fakery, A. El-Agrody, Farmaco., 2000, 55, 708.
- 34. A. Bedair, H. Emam, N. El-Hady, K. Ahmed, A. El-Agrody; *Farmaco.*, 2001, 56, 965.
- 35.G. Nandi, S. Samai, R. Kumar, M. Singh; Tetrahedron., 2009, 65, 7129.
- K.Kumar, S. Satyanarayana, P. LakshmiReddy, G. Nara-simhulu, N. Ravirala, B. Subba Reddy; *Tetrahedron Lett.*, 2012, 53, 1738.
- 37.M. Mohaqeq, J. Safaei-Ghomi; Monatsh. Chem., 2015, 146, 1581.
- 38.S. Jalde, H. Chavan, L. Adsul, V. Dhakane, B. Bandgar; Synth. React. Inorg. Met.Org. Chem. 2014, 44, 623.
- 39.S. Azimi; Iranian J. Catal. 2015, 5, 41.
- 40.B. Maleki, S. Barzegar, Z. Sepehr, M. Kermanian, R. Tayebee, J.Iran Chem. Soc., 2012, 9, 757.
- 41.J. Khurana, A. Lumb, A. Chaudhary, B. Nand; RSC Adv., 2013, 3, 1844.
- 42.S. Sajadikhah; RSC Adv., 2015, 5, 28038.
- 43.H. Kefayati, M. Golshekan, S. Shariati; Chin. J. Catal., 2015, 36, 572.
- 44.B. Maleki, E. Akbarzadeh, S. abaee; Dyes Pigm., 2015, 123, 222.
- 45.B. Maleki, M. Gholizadeh, Z. Sepehr; Bull. Korean Chem. Soc., 2011, 32, 1697.
- 46.G. Brahmachari, N. Nayek; ACS Omega., 2017, 2, 5025.
- 47.M. Fatahpoura, N. Hazeria, M. Maghsoodloua, M. Lashkarib; Polycyclic Aromatic Compounds., 2017, 10, 1080.
- 48.G. Brahmachari, S. Das; Journal of Heterocyclic Chemistry., 2014, 10, 1002.
- 49.S. Jalde, H. Chavan, L. Adsul, V. Dhakane, B. Bandgar; Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry., 2014, 44,623.
- 50.R. Ghahremanzadeh, F. Fereshtehnejad, A. Bazgir; Chem. Pharm. Bull., 2010, 58, 516.
- 51.S. Abdolmohammadi, S. Karimpour; Chinese Chemical Letters., 2016, 27, 114.
- 52.C. Zhang, R. Huang, X. Hu, J. Lin, S. Yan; J. Org. Chem., 2018, 83, 4981.
- 53.A. Bhat, G.Naikoo, I. Hassan, R. Dongra, T.Ara; Beni-Suef Univ. J. Basic Appl. Sci., 2017, 6,238.
- 54. A. Olyaei, F. Gahramannejad, R. Khoeiniha; Synthetic Communications, 2016, 46, 1699.
- 55.H. Mohamed, A. El-Wahab, T. El-Gogary; European Journal of Chemistry., 2017, 8,358.
- 56.S. Kumari, J. Khurana; Indian Journal of Heterocyclic Chemistry., 2015, 24, 395.